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Abstract 

Given a real homogeneous polynomial F, strictly positive in the non-negative orthant. P6lya.s 
theorem says that for a sufficiently large exponent p the coeficlents of F(xl,. ,I,,). (xl + + 
x,,)” are strictly positive. The smallest such p will be called the P6lya exponent of F. We 

present a new proof for P6lya’s result, which allows us to obtain an explicit upper bound on 
the P6lya exponent when F has rational coefficients. An algorithm to obtain reasonably good 
bounds for specific instances is also derived. 

P6lya’s theorem has appeared before in constructive solutions of Hilbert’s 17th problem for 
positive definite forms [4]. We also present a different procedure to do this kind of constructlon. 

1. Introduction 

In 1928 Pblya [7] proved the following theorem (see also [5]): 

Theorem 1.1 (P6lya). Let F(x,,. . . ,x,) he u red homogeneous polynomiul which is 

positive in x, 2 0, Cx, > 0. Then, for 

F(.Yl,..., X,,)‘(.Xl + “‘_tx,)” 

has ull its coqficients strictly positive. 

a sufficiently larye integer p. the product 
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The smallest exponent p that satisfies the properties of the theorem will be called the 

Polya exponent of F. Our purpose is to show an elementary derivation for an upper 

bound of the Polya exponent. Using an effective Lojasiewicz inequality for the case of 

rational coefficients [lo], this upper bound can be written in terms of the degree, the 

number of variables and the size of the coefficients of F. This is done in the following 

theorem. 

Theorem 1.2. Let F(x,,. . ., x,) be a real homogeneous polynomial of degree d whose 

coeficients are bounded in absolute value by 1 > 2. Suppose that F is strictly positive 
in the non-negative orthant (minus the origin). Denote by 3, the minimum of F in the 

unit simplex A = {c:=, x, = 1, x, 2 0 Vi}. Call D the maximum of d + 1 and n + 1. 

Under these assumptions. 
1. If F has integer coeflcients, then l//J is bounded above by lDU”‘. 

2. For any integer p greater than (In d2 + dn)/& the product 

F(xI,...,x,).(xI +...+x,)~ 

has all its coeficients strictly positive. 

We remark that recent work by Reznick (see [S]) contains results similar to part 

two of our theorem. Observe that Theorem 1.1. implies that F can be written in the 

form F = G/H, where G and H are homogeneous polynomials with only positive 

coefficients. This is a necessary and sufficient condition for F to be strictly positive 

in the non-negative orthant. In a similar way, Artin decomposition of a polynomial 

as a quotient of two sums of squares is necessary and sufficient to guarantee positive 

semidefiniteness in [w”. Habicht [4] found a way to construct an Artin decomposition of 

a positive definite form using Polya’s theorem. In Section 3 we present a new method 

to do this. 

Let us finally indicate that a slightly more general version of Polya’s theorem appears 

in the theory of Geometric Design (see Theorem 1.3 in [3]) in connection with the 

approximation of polynomial functions in a simplicial region. The generalization comes 

from the fact that the convergence result in the proof of Lemma 2.1 is still true for F 
not necessarily positive. This implies that, for large p, the coefficients of the polyno- 

mials (xi +. +x,)PF(xl,. . . ,x,,) approximate F(xl,. . . ,x,) (up to a normalization) at 

some test points in the simplex A = { C:=,xl = 1, x, _> 0 Vi}. 

2. Proof of the main result 

We will first present some notation. We will abbreviate F(x,, .,x,) by F(X). The 

polynomial F(X) can be written as a difference F+(X) - F_(X) where the polynomials 

F+(X) and F_(X) have only positive coefficients. We use XX to denote x1 +x2 + 
. . + x,, and X + d to abbreviate (xi + d, . . . ,x, + d). Finally X > 0 will indicate that 

xl > 0 for i = l,...,n. 



J A de Loeru. F. Santosl Journal of Pure and Applied Algebra 108 (1996) Z-240 233 

Lemma 2.1. Let F(X) be a real homogeneous polynomial of degree d, strict<v positive 

in the non-negative orthant (minus the origin). 

1. The semialgebraic region G := {X : F+(X)- F_(X+d) 5 0, X > 0} is bounded. 

2. For arty> p greater than or equal to dn plus the maximum of XX on the region 

G, the product F(X). (CX)f’ h as all its coefficients strictly positive. 

Proof. Observe that the part of largest degree of F,(X) = F+(X) - F-(X + d) is the 

polynomial F(X) and the remaining terms have negative coefficients. Hence for each 

point Q in the simplex d = {XX = 1,X 2 0) the univariate polynomial He(A) = 

F,( iQ) has a positive leading term and the rest of its terms are negative. Call r(Q) 

the only positive real root of HP(~). The function r(Q) is continuous in A which is 

compact and thus attains a maximum. This finishes the proof of part (1). 

For the proof of part (2), let F(X) = CcrXV, and F(X)(CX)r = CCuXL’, where 

I’ = ( vI,. . , II,), CzlI = d and U = (ui,. . . ,u,), Cul = p + d. Then the coefficient 

Cc equals 

c cv 
P! 

= ~cVP”,c~. 
yr,=d (UI - vl)! ‘..(t& - v,)! 

If u, > d for i = 1,. . . , n then it is easy to see that the following two inequalities 

are satisfied (note tat 0 5 P, 5 d for all i): 

p! > 
u;‘...u; 2 PUJ > 

P! 
U,!‘..U,! t.Q!...u,! 

(UI - d)” . ..(u. -d)‘8i. 

Using one of these inequalities for each P I/.J depending on the sign of cl. we get 

U,!...U,!C~ 

P! 
>F+(u,-d ,..., u,-d)-F_(u ,,... ,u,). 

Otherwise, one of the u, is smaller than or equal to d. Without loss of generality 

assume ~1,. .,uk > d 2 uk+l,. . .,u,. In this case we have another pair of inequalities: 

P! 
u,!...u,! 

(u,)” ...(z~)‘!~dl‘~+’ . ..d”!l 2 PU,,, 

PUJ > 
P! 

U,!‘..U,! 
(u, - A)“’ . (uk _ &““@‘“+I . @I, 

where 0’ is taken to be 1 if r, = 0 for some i > k. In the same way as before we 

conclude that 

CA1 ! u,!C(y 

P! 
2F+(u1 -d,. ..,uk -d,O ,..., O)-F_(u ,,..., un-,d ,..., d). 

In both cases we obtain (ui ! . . u,!Cu/p!) > F+(xI,. ,.Y,) - F-(x1 + d.. . .,x, + d) 

for certain xi,. ,x, with cx, > p - dn. Using the assumption on p, we have 

F+(x ,,...,. x,)-F-(x, +d ,..., x,, + d) > 0 and thus the coefficient C” is positive. !J 

For the proof of Theorem 1.2 we want to give a procedure to find the maximum of 

the linear form XX inside the region G = {X E R” 1 F+(X)-F_(X+d) < 0, X > 0). 
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We will also derive a theoretical bound for this maximum using an effective tojasiewicz 

inequality. The following statement is the quantifier free case of Lemma 5 in [lo] (see 

Ch. 2 of [l] for genera1 information on Lojasiewicz inequalities). 

Lemma 2.2 (Solern6). Let V c ET’ he a non-empty und closed semialgebraic set and 

let f : V -+ R be a continuous semialgebraic function. Assume that both V and the 

graph off are defined by quantifier free formulas @IT and @I involving polynomials 

tvith integer coejicients. Denote by Dir and Df the sum of the degrees of the poly- 

nomials in the respective formula. Let D = max{Dr.,D,} and let 1 be the maximum 

absolute value of the coeficients involved in the formulas. 

There exists a universal constant c E N such that, under the above conditions, lt’e 

huve 

for all x belonging to V. 

Proof of Theorem 1.2. In part one we use Lemma 2.2 with the simplex A as V and 

f = l/F. In our case D = max{d+l.n+l} and in the simplex A we have (l+l.rl) 52. 

Taking into account that 1 and D are bigger than 2 we obtain a bound for l/F in A: 

This completes the proof of part one. For part two we first note that the inequality 

F_(X+d) 5 F_(X)+d~(?F_/8x~)(X) IS valid in the non-negative orthant. This fol- 

lows from Taylor’s multivariate theorem taking into account that F_ has only positive 

coefficients. As a consequence, the semialgebraic region G defined in Lemma 2.1 is 

contained in 

G’= 
C 

X:F(X)-d+X)<O, X>O . 
I 1 

Notice that F(X) - dz(6F_/?x,)(X) 5 0 if and only if XX < d(~)(~(2F_/&) 

(X))/F(X). The right-hand side of the last inequality is a quotient of two homogeneous 

polynomials of the same degree and we can bound it by the quotient of the maximum 

of d(CX)(C(iiF_/&,)(X)) and the minimum of F(X) in the simplex. The minimum 

of F(X) equals 3, and the maximum of the numerator can be seen to be bounded by 

lnd’, because of the following chain of inequalities: 

< d2nF_(X) 5 d2nl. 

We have used that XX = 1 because we are in the unit simplex and (c?F_/iix, )(X ) < 

dF_(X) because F- has only positive coefficients. Thus XX is bounded by (lnd’li,) 

in G’ as desired. This completes the proof. q 

Lemma 2.1 provides us with an algorithm to find a reasonably good bound for the 

P61ya exponent which is a priori smaller than those given in Theorem 1.2. We need 
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to find the maximum for the linear functional CX in the region G which was defined 

using F,(X) = F+(X) - F-(X + d). The maximum will be attained at a boundary 

point Q = (41,. ,qn) such that F*(Q) = 0 and the partial derivatives of F, with 

respect to non-zero entries are all equal. This allows us to use symbolic methods (such 

as Griibner bases). Nevertheless, since we are only interested in an upper bound for 

the Polya exponent, it is enough for our purposes to apply numerical optimization 

techniques (such as numerical Lagrange multipliers). In the following table we show 

the value of the maximum CX in G for several polynomials and compare it with the 

Polya exponent. The values in the last column have been found by means of Grobner 

bases and real root isolation. 

Polya exponent 

1ooo.r~ - 1999xy + lOOO_v2 3997 

50x? - 99x-v + 5oy2 197 

(50X? - 99X.r + 50>+* + y2) 193 

(50-Y’ - 99xy + 5Oy2)(x4 + x2_? + y4) 187 

(x - y )‘(x + 6-v)’ + y4 197 

5-u’ + (x - y)‘(.~ + 6-v)’ + y4 44 

1 Ox3 + (x - _v)~(x + 6~)’ + y4 30 

(X-Z)2+(_V-z)2+(x+y)Z 3 

(412x’ - 18x3y + 556x2y2 + 40xy3 + 533 y4 - 2 

24x3 - 344x2y + 184x$ - 200y3 + 540x* + 

134?ry+678y2 - 182x-92y+444) 

15994 

794 

3180 

7158 

1948 

367 

228 

19 

30 

The last example in the table is a sum of the squares of 50 randomly generated 

quadratic forms, and will be used in Section 3 as an example of the process described 

in Theorem 3.2. The coefficients of the quadratic forms were generated using MAPLE’s 

random numbers subroutine with [-5,. . ,5] as the range of variation. Our computa- 

tional experience indicates that such “random” polynomials tend to have a low Polya 

exponent. 

Let us analyze in detail an example that contains as particular cases the first two 

polynomials in the table. Consider F(X) = x’; +. . .+x,“-(n-E)XI . . ..x. for a positive 

and small E and large IZ. As pointed out in [5] its Polya exponent is approximately 

(n3(n - 1)/2a). The maximum of CX in G is attained at a point with xa = . . . = x,, 

and it is approximately (n4/a). So, the bound given by Lemma 2.1 equals the Polya 

exponent asymptotically up to a factor of 2. 

We can deduce some important consequences of this example: Polya’s theorem is 

not true if F is only non-negative [5] or if it is strictly positive only in the upe~ 

orthant (e.g. F(x,_v,z) = (x - y)2 + z*). The theorem is again not true over non- 

Archimedean fields (taking E to be an infinitesimal). Finally, the Polya exponent p 

cannot be bounded only by the degree d and the number of variables II of F (for 

these last two comments see [9]). Any bound will necessarily include the size I of its 

coefficients. 
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3. Decomposition of strictly positive polynomials 

In this section we will connect Polya’s theorem to Hilbert’s 17th problem. This 

problem asked whether every non-negative real polynomial can be expressed as a 

quotient of sums of squares of real polynomials. It was non-constructively solved by 

Artin in 1928 and other solutions have been proposed later, which are constructive or 

give conditions and bounds on the output polynomials. We recommend [l] and [2] for 

a brief history of the problem ([2] puts special emphasis on constructive aspects of the 

solution). 

Polya‘s theorem was used by Habicht [4] to give explicit solutions to Hilbert’s 17th 

problem in the case of positive definite homogeneous polynomials. Here, we present a 

different way to do this. If we have a positive definite homogeneous polynomial F in n 

variables, Polya’s theorem can be applied to F( cinr , E?x?, . . . , E,.Y,~ ), where E, E { +, -}. 

In this way we have 2” Polya-like-expressions, each of them certifying the positive- 

ness of F inside a different orthant. We proceed to glue these local certificates with 

techniques similar to those in [6]. The decomposition of F obtained in this way is a 

quotient of two sums of even powers of monomials in the “variables” XI ,.x1,. ,_ ,,, x F. 

Let us remark that Reznick [8] has also given, using less elementary techniques, con- 

crete decompositions for the same family of polynomials. His decomposition has a 

sum of even powers of linear forms in the numerator and a power of CX~ in the 

denominator. 

For convenience we will state all results in this section for an inhomogeneous poly- 

nomial F. This is possible provided that its homogenization is positive definite or, 

equivalently, if F is strictly positive and its largest degree part is positive definite. 

Reciprocally any positive definite homogeneous polynomial can be dehomogenized 

yielding an inhomogeneous polynomial with the above conditions. Hence Theorem 

3.2 applies to homogeneous polynomials as well. In the following discussion K will 

denote any ordered field and K+ denotes the set of strictly positive elements in K. 

Only in the last part of Theorem 3.2 we need K to be the rationals in order to apply 

the bound in part one of Theorem 1.2. 

Lemma 3.1. Let F E K[xl . . . ,.r,]. Suppose thut ji)r a giren x, we have tii’o identities 

F.A, = B1 and F.A2 = Bl where Al, B1 ure polynomials in K+[x,, T,F2] und Az.B2 ure 

polynorniais in K+[-x,, T, F’], for some arbitrary set of’ irzdeterminates T. Asswze 

thut both BI und B2 have a non-zero constant term. Then we can jind an e.yession 

of the forru F . R = S Inhere R und S are polynomials in K+[xf , T, F’] und S has u 

non-zero constant term. Moreover deg(S) 5 deg(B1) + deg(B2). 

Proof. We can decompose Ai = Ai.1 +_rrA1,2, BI = Bl.1 +x,Bl.z, AZ = Al.1 -_.r,A~,z, 

and Bz = B2.1 - x,Bl,~ with AI,I,AI,z, BI.I,BI.z,A~,I,Az,?.B~.I and 82.2 E K+[$. T.F’l. 
Separate the two identities in the form 

FAI,I - BLI = -x,FAI,z +x$1.2, FA2., - B2., = x,FA2.’ - x,B~,~. 
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Multiplying side by side the above equations and grouping together terms with F, 

we obtain 

F b41.1B2.1 + B1~~42.1 +-&4,.2B2,2 +xfS,.2&2) 

= F2M.,A2., +44,,2~2.2)+B,,,B2.1 +x;B,,2&,2. 

By hypothesis both B,,, and B2.r have a non-zero constant term and thus B,,,B2,, has 

a non-zero constant term. The constant term of F2A A 1.1 z,, is either zero or positive, 

and thus the constant term of the right-hand side of the equation above is positive. 

From the above expression it is clear that deg(S) < deg(B, ) + dey(B2). q 

As an immediate application of the above lemma and as a preparation for the mul- 

tivariate case we present a method to decompose a real univariate strictly positive 

polynomial F as a quotient of two sums of squares. We remark that in the univari- 

ate case, the additional condition of F having a positive definite largest-degree part IS 

redundant. Applying Theorem 1.2 to the homogenization of F we have the following 

expression where B,(x) has only positive coefficients 

F(x)(x + l)p = B,(x). 

With the same process applied to the polynomial F( -x) we obtain 

F(s)( 1 - .x)~ = B?(-x). 

Taking A, = (x + 1 )J’, Al = (1 - x)q and T = 0 we are in the srtuation of Lemma 

3.1. This will give an expression F . R = S with R,S polynomials in R+[_I?, F’] and 

thus sums of squares. 

Theorem 3.2. Let F(x, ,x1,. . ,x,) be u real strictly positive polynomial of degree d, 

hchose homogenization is positive dejnite. For each E = (E,. . . , e,) in E” = { +, -}“. 

let pI be the PGIJu exponent of the homogenization qf F in the orthant Inhere the 

sign of the ith coordinate equals 8,. Let P = xrEE,7pfz and D he the maximum of 

d + 1 und n + 1. Then It’e can u’rite 

F.R=S, 

+tvhrre R, S E K!+ [x:,x:, . ,xi, F2] and deg(S) < P + 2”d (inhere S is considered as a 

po&nomiaI in the origin& variables x, ,x2,. . . .x, to compute deg(S)). 

!f F l Z[x, ,x2,. ,x,1, then llie can find R and S in Z+[x;‘,xi, . . . ,_Y:, F’]. We CUII 

also choose R and S Gth lDoii” monomials, \&ere I is an upper bound for the absolute 

values of the co@cients of F. 

Proof. Let E” = {+, -}“. For each E = (t.r , . . . , E,,) E E” we have a Polya expression 

m the corresponding orthant 

FCr, 7x2 , . ,x, ) A, = B, , 
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where A,,B, E R+[qxl,. . . , enxn]. Moreover, A, = (1 + ~1x1 + . . . + &,x,,)P* and thus B, 

has degree pE+d and a non-zero constant term. Our goal is to glue the 2” expressions in 

pairs using Lemma 3.1. More explicitly, for each (T E En-’ consider the two expressions 

FA, = B, and FA,, = B,I where e = (0, +) and E’ = (0, -). 

We can apply Lemma 3.1 with T = {cr~x~,cr~x2,. . , a,_lx,_l}. This will give 2(“-‘) 

expressions (one for each G = ((~1,. . . , B,_, ) in En-’ ) where the variable x, always 

appears squared. Inductively, for each 5 E En-‘, we take the two expressions FA, = 

B, and FA,t = B,I with 0 = (7. +) and G’ = (7, -) and apply Lemma 3.1 with 

T = (~1x1, ~2x2,. . , z,_~x,_~,x~}. This process can be continued until all the variables 

appear squared. 

For the degrees we note that in each gluing the degrees of the expressions glued 

are added. The degree of the final expression will be the sum of the degrees of the 2” 

equations derived from Theorem 1.2. This gives the bound P + d2”. 0 

We want to illustrate our method with a simple example. Consider the last polyno- 

mial given as an example in Section 2: F := 134x? - 92~ - 182x-24x3 +412x4 + 

540x2+678v2+533 y4-200y3- 18x3y+556x2y2-344x2y+40xy3+184x_v2+444. 

We will apply the process described in the proof of Theorem 3.2. P6lya’s theorem 

applied to F in each one of the four orthants gives the following four identities (we 

show the intermediate distributions of the terms with respect to parity of the powers 

of y): 
(~)F(l+x+y)* =F(1+2x+x2+.v’+y(2+2x))= 1722x’.$+1442xy2+874x3+904x4+706x+ 

620x2+938y2+811 .~4+444+548x3y~+932x4~~+930y4x+1169~4x2+800x5+412x6+533y6+p(474xt 

460x3+548x2+1498xy2+796+1064~2+396x4+806x5+1106ydx+1016x~y2t1134x3y2+866~4) 

(ii) F(1 +x - y)? = F(1 + 2.x +x2 + y’ - y(2 +2x)) = 2562~~~~ + 1274x$ + 874x3 + 904x4 + 

706x+620x2+1306y2+1611~4+444+1996x3y2+1004.~4~2+1570~3x+1009y4~2+800~5+412x6+ 

533y6-y(574x+1604x3+884x~+1950x~2+980+1648~~2t1156x4+842x5+1026~4x+l944x2~2+ 

1090x3~.* + 1266~~). 

(iii) F(l -x + ?.)* = F(1 - 2x +x2 t y* t y(2 - 2x)) = 450x2y2 - 902xy* - 1286x3 + 1000x’ - 

1070x+1348x’+938~2+811~~+444-300x3~2+1004x4y2-4O2~4x+1009yJx2-848x5+412xb+ 

533y6+y(-934x-324x3 +740x’-414x-v* +796+ 1064~~ t564x4 -842x5 +866y4 - 1026~~~x+ 

120x*y* - 1090x3.v~). 

(IV) F( 1 -x - y) = 716~‘~~ -628xy*-564x3t436x4-626x+722x2t770y2t733y4+444- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Applying Lemma 3.1, with y as the distinguished variable to the pairs (i)-(ii) and 

(iii)-(iv), and grouping terms as in Lemma 3.1 we get (notice the expressions are 

presented now arranged by parity of powers of the variable x): 
(I)-(ii): F(7508x2y6+ 18160x2y2+6544x4+4952x2 +6684_v* t 10090~v4+20348x4y2 +26700~~x*+ 

5832x6+7752y6+8562x4y4+6056x6~*+824xs+1066y8+888+x(14264y2+5640x2+3188+22568x2~2+ 
22380~~ +6964x4 + 14416~~~’ + 19768~~~’ + 13160~~ +3248x6)) 

= 2O679124x2~6+6723652x2y2+242124Ox4+1O48996x2+1776416~2+4654924v4+12531112x~y’+ 

168938O4~v4x2t338O292x6+6653476p6+24185356x4~4+12976984x6~~+3666432x~p4+5547524x6~6+ 

1476284~‘~y’ + 4580433~~~’ + 229563Oy”x’ + 169744x’* + 284089 y’* + 6 F2x2 y* + F2 + 6 F2x2 + 

6 F2 v* + @x4 + F2y4 + 17274928~~~~ + 202961 16n4y6 + 7688272x*y? + 13108438x2y8 + 2726496x8 -t 

5278765~R+1384896x’0+2387282y’o+197136+x(3711592~‘+1651552s2+626928+10260368x2~2+ 

10310324y4+3070608x4+14459768x4y~+22021832y4x2+14337360~6+3621212y’o+9347744x6~4+ 

12882352x4_@ + 3862096x*? + 9701716x2_? + 659200x” + 12F2y’ + 2166576x* + 4F2 + 4F2x2 t 
22429140x4_v4 +22897032x’.@ + 10878896x6y2 + 10718648_v’ +3153936x6). 
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(ul)P(iv): F(8408x2y’ + 4572 x4 + 4836x2 + 4020~~ + 5134~~ + 5584~~~” + 5430y4x2 +2520x6 + 

3198~~ + 888 -x(7456?’ + 5268.x’ + 3028 + 6972x*y’ + 6162 _v’ +3696x4 + 3584x4y2 + 4402y’%? + 

3198,~” + 8241’) 

=5298888.x’y6 + 5057552x’y* +3019356x4 + 1588900x2 + 1185008 _v’ + 2676988 y4 + 6822948~~~~ + 

6963772 ~~4x’+3189648.~6+3371312 ~6+6633028.~4y4+5042212~6y2+F2+3 F2.x’+3 F2y’+3085788x6~J* 

3212416x4yh + 1829476x8_? + 1989123x2y8 + 1741568.~~ + 2332333~~ + 529008x’” + 852267~‘” - 

197136-~~(29l58OO~~+2437788x~+753O24+6l41928x2~v2+4529144~4+334O724x~+6443844~4~~‘~ 

7068028 +Y- + 4175308 f’ + 852267 1.‘” + 2123228~~~~ + 2840400x4y6 + 967052x8?’ +2057377.~‘>,~ + 

169744x’o+3F~~~cl014096.~“+3F2+F2~~2+5639176.~4~~3+4866908~~~6+3468572~~b~‘+2264079~“+ 

255024016). 

Finally, applying again Lemma 3.1 with x as the distinguished variable, we get 

the following expression from which F is decomposed as a quotient of two sums of 

squares: 
F(716381628672.x2yh + 80945077792~~~~ + 1309788013600x’“y440286070144x~ + 8570997312.~’ + 

4739888256~’ + 24573722112 y4 + 318423130400.~4y’ + 317633301040_~~~~ + 99294039872.~~ + 

68743283680~~ + 1060688074256x4y4 + 672316077216x6yz + 143469890432xi4y2 + 

1982702974736x8yJ + 2814822717360x6y6 + 768832371904~‘“~~ + 2303389497104xJy8 + 

990053073384y’“x + 125406307008~” + 11643574486Oy’* + 1863486418736~~~‘~ + 

1983138377456~~~~ + 886558335136~~~~ + 1032502294416x2y8 + 505612381472x’~yJ + 

157752051648.~~ + 122024198048 y8 + 169540742272~‘” + 144755788904,~‘” + 40199723460~‘~‘~ + 

2507919676288~~ v* + 1687333237608s’y’” + 2293828274592.xsy6 + 621063650084.~‘y’~ + 

1282298534376x6\‘” + 1423499576064~~~’ + 379456896112~~p’~ + 292967217500x6r” + 

338955778976~‘~~~ + 145245087972x41;‘” + 1051819997200x’“y6 + 235854251632.~‘~‘~ + 

208393538448.~“y~ + 60652193280~‘~ + 735231433668x4$* + 1817033244 ?,I8 + 20512201152.+‘~’ + 

60546876076y“’ + 17483777024~‘~ + 18186081524.~‘~ + 1958166784~” + 350113536 +(39456.x’ + 

109168s” + 60284 v4 + 128196x’y” + 89728~~~~ + 76044~~ + 227652~~~~ +395200x*$ + 48644~~ + 

11536.~‘” + 6396 yio + 208940x6y4 + 551252~~~~ + 342344xb,? + 451140 vJx’ + 430776x’y’ + 

238456~‘~’ + 1776 + 72800x8 + 18696~~ + 122640.@)F* + 85194907968;‘“~~ + 430307879168.~‘~~~ ) 
=( 153448078017504~~~~ + 1 1011029982720x2y2 + 851952864568912x’“y + 5511262925968~~ + 

992116096128~‘+583803281664 ,~~+3550450975360~4+53477285280880x4~Z+5328507l815840~4.~~+ 

16742340875856~~ + 1224781310.1568 y6 + 228076657290496x4?p + 1442759995630721~y” + 

177419113096224~‘~~’ + 818449513424880x8_v4 + 1160297022426176.r6~6 + 316404880090816~~‘“v’ + 

943080312658456x4? + 400790099977488 _v’~x’ + 51946321935360~‘~ + 51812546094456 ?,I2 + 

537983815619840~~~~ + 571695232269920~~~~ + 255064333134736~~~~~ + 295172928849576~‘~~ + 

613138233076304.~“y’ + 33884952842288~’ + 27834477697840~’ + 48891319043696~‘~ + 

44539310679888 y’” + 132667868133349~~~‘~ + 1609709073374408x6y8 + 1074117047816472.r~~‘” + 

1484929624125296.~x~~6 + 391920773628424x’y” + 1494743643985512~~y’” + 1679981404535176.~8~u + 

l2l0562461740080x”~‘~+922584991406952x6,~’2+110l811041447776x’o~8+46307l536349080xJ?Ij+ 

1257591653271104x’5vh + 274626206521816~~~‘~ + 697775379415696x’“y’ + 40598074878080s’” + 

854507981216656.~~$~ + 11022901919929y18 ; 76241258273152~‘~y’ +44002353922224~‘” + 

22913533222784~‘~ + 26786486470753 ?,I(’ + 8809248338688~” + 296435588380336~‘~~” + 

40113876079218 ?,%’ + 5607817144761 $“x2 + 25101305044221 x4 v18 + 20172563339904~‘~ 1.? t 

2384556922240.~‘“~’ + 63315154652095~~y’~ + 128071716208936xio~‘~ + 11885395021040.~ixv4 + 

106193345637816&‘J + 75244284164400~‘~~~ + 113979811644760.&,‘” + 36042080253584.& v6 + 
l56928941649179$6x4 + 87953191492976+y4 + 351913378400864~~~‘~ + 234657785839200~‘~,,~ + 

525673478728032x’.v” + 427778646436656.x”y’ + 557728278696952~~“y’~ + 38862602496 + 

281083319515232x’~~‘+2697191817931 y2”+242119679763 y~*+2064497141504x~“+201691178752*?’+ 

(3~~h+45.~4~~+19~~+21~~~+9~~2+l+90x2~2+57~4x2+35.~~+7xb)F4+(10ll238152.rZ~6+ 

‘14583120x’.? +213172104x’“_? + 104354136.~~ +27650008x’ + 14240800yz + 60356936~5” + 

628009464~‘~~ + 633987416.~~~~ + 191801384.~h + 125837552 _v6 + 1474515760.xJy’ + 929987432r”y’ + 
932892160u8.v4 + 1345813968~~~~ + 355155544x’“y’+ 1110516186.x4yx +486373732y’0xz + 

54326496.~” +4515561Oy” + 1635596488x6y4 + 17554002OO.~‘y~ + 771165424~~y’+932373358.~‘~~ + 

214189576.~~ + 155761526.?+ 142279872x’“+ 112787062y’“+436152642.x6~X +292702206x4y’“+ 

386752696.xxy6 + 107817366x’y” + 7129248.~‘~ + 5113602~‘~ + 1182816 + 65068392~‘~y:)F’) 
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