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Abstract

Given a real homogeneous polynomial F, strictly positive in the non-negative orthant, Polya’s
theorem says that for a sufficiently large exponent p the coefficients of F(xi,...,x,) - (x1 + --+
x,)F are strictly positive. The smallest such p will be called the Polya exponent of F. We
present a new proof for Polya's result, which allows us to obtain an explicit upper bound on
the Polya exponent when F has rational coefficients. An algorithm to obtain reasonably good
bounds for specific instances is also derived.

Polya’s theorem has appeared before in constructive solutions of Hilbert’s 17th problem for
positive definite forms [4]. We also present a different procedure to do this kind of construction.

1. Introduction

In 1928 Pélya [7] proved the following theorem (see also [5]):

Theorem 1.1 (Polya). Ler F(xi,....x,) be a real homogeneous polynomial which is
positive in x;, > 0, S x, > 0. Then, for a sufficiently large integer p, the product

Flxp, ... (xy + - +x)F

has all its coefficients strictly positive.
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The smallest exponent p that satisfies the properties of the theorem will be called the
Pélyva exponent of F. Our purpose is to show an elementary derivation for an upper
bound of the Polya exponent. Using an effective Lojasiewicz inequality for the case of
rational coefficients [10], this upper bound can be written in terms of the degree, the
number of variables and the size of the coefficients of F. This is done in the following
theorem.

Theorem 1.2. Let F(xy,....x,) be a real homogeneous polynomial of degree d whose
coefficients are bounded in absolute value by | > 2. Suppose that F is strictly positive
in the non-neqative orthant (minus the origin). Denote by A the minimum of F in the
unit simplex A = {3>>7_x, =1, x, > 0 Vi}. Call D the maximum of d +1 and n+ 1.
Under these assumptions:

1. If F has integer coefficients, then 1/A is bounded above by L

2. For any integer p greater than (Ind* + dn)/4, the product

F(x1,o..,%0) (X1 4+ +x,)P

has all its coefficients strictly positive.

We remark that recent work by Reznick (see [8]) contains results similar to part
two of our theorem. Observe that Theorem 1.1. implies that F' can be written in the
form F = G/H, where G and H are homogeneous polynomials with only positive
coefficients. This is a necessary and sufficient condition for F to be strictly positive
in the non-negative orthant. In a similar way, Artin decomposition of a polynomial
as a quotient of two sums of squares is necessary and sufficient to guarantee positive
semidefiniteness in R". Habicht [4] found a way to construct an Artin decomposition of
a positive definite form using Pélya’s theorem. In Section 3 we present a new method
to do this.

Let us finally indicate that a slightly more general version of Pélya’s theorem appears
in the theory of Geometric Design (see Theorem 1.3 in [3]) in connection with the
approximation of polynomial functions in a simplicial region. The generalization comes
from the fact that the convergence result in the proof of Lemma 2.1 is still true for F
not necessarily positive. This implies that, for large p, the coefficients of the polyno-
mials (x; + - - +x,)?F(xy,...,x,) approximate F(xi,...,x,) (up to a normalization) at
some test points in the simplex 4 = {3_/_x, =1, x, >0 Vi}.

2. Proof of the main result

We will first present some notation. We will abbreviate F(xy,....x,) by F(X). The
polynomial F(X) can be written as a difference F., (X )—F_(X) where the polynomials
F.(X) and F_(X) have only positive coefficients. We use > X to denote x; + x; +
.+~ +x, and X +d to abbreviate (x; +d,...,x, +d). Finally X > 0 will indicate that
x, >0fori=1,...,n
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Lemma 2.1. Let F(X) be a real homogeneous polynomial of degree d, strictly positive
in the non-negative orthant (minus the origin).
1. The semialgebraic region G := {X : F{(X)~-F_(X+d) <0, X > 0} is bounded.
2. For any p greater than or equal to dn plus the maximum of > X on the region
G, the product F(X)-(3_X)? has all its coefficients strictly positive.

Proof. Observe that the part of largest degree of F (X)) = F (X)— F_(X +d) is the
polynomial F(X') and the remaining terms have negative coefficients. Hence for each
point Q in the simplex 4 = {>_X = 1,X > 0} the univariate polynomial Hp(4) =
F.(AQ) has a positive leading term and the rest of its terms are negative. Call r(Q)
the only positive real root of Hp(4). The function #(Q) is continuous in 4 which is
compact and thus attains a maximum. This finishes the proof of part (1).

For the proof of part (2), let F(X) =3 cy X", and F(X )3 X)? = Y. CyX", where
V={(vi,....vn), p.v,=d and U = (u,...,u,), y_u, = p+d. Then the coeflicient
Cy equals

p!
Z = ZCVPU,V~

cy
S (g = o) (uy — vp)!

If u, > d for i = 1,...,n then it is easy to see that the following two inequalities
are satisfied (note tat 0 < v, < d for all {):

p' AT} t p! v 1
— ' ouy) > Pyy > ———(uy —d)" .. (4, —d)".
uy! - uy! w!---uy,!

Using one of these inequalities for each Py depending on the sign of ¢, we get

w!-u,!C
—~'—"U— Z F+(u1 —d,.‘.,u,, _d) -F~(ula~-csun)-
p!
Otherwise, one of the u, is smaller than or equal to d. Without loss of generality
assume uy,...,u; > d > up41,...,4,. In this case we have another pair of inequalities:

|
— ) ) d L dT > Py,
TN

PU,V > () —d)v' ---(uk _d)L'AO'-‘A-H "'OL”,

ut- - uy!

where 0° is taken to be 1 if r, = O for some i > k. In the same way as before we
conclude that

u1!~--u,,!CU

o >Fo(uy —d,...,up —d.0,...,0) — F_(uy,...,up,d,...,d).

In both cases we obtain (u!: - u,!Cy/p!)y > Fo(xy,...,xp)— F_(x1+d.....,x, +d)
for certain x,...,x, with ) x, > p — dn. Using the assumption on p, we have
Fi(x1.....x,) — F_(x1+d,...,x, +d) > 0 and thus the coeflicient Cy is positive. 1

For the proof of Theorem 1.2 we want to give a procedure to find the maximum of
the linear form Y X inside the region G = {X € R" |F,.(X)—F_(X+d) <0, X > 0}.
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We will also derive a theoretical bound for this maximum using an effective Lojasiewicz
inequality. The following statement is the quantifier free case of Lemma 5 in [10] (see
Ch. 2 of [1] for general information on Lojasiewicz inequalities).

Lemma 2.2 (Solernd). Let V CR" be a non-empty and closed semialgebraic set and
let f:V — R be a continuous semialgebraic function. Assume that both V and the
graph of f are defined by quantifier free formulas ®; and ®, involving polynomials
with integer coefficients. Denote by Dy and Dy the sum of the degrees of the poly-
nomials in the respective formula. Let D = max{Dy,D;} and let I be the maximum
absolute value of the coefficients involved in the formulas.

There exists a universal constant ¢ € N such that, under the above conditions, we
have

FEO < P4 P

for all x belonging to V.

Proof of Theorem 1.2. In part one we use Lemma 2.2 with the simplex 4 as V' and
f = 1/F. In our case D = max{d+1.n+1} and in the simplex 4 we have (1+|x|) < 2.
Taking into account that / and D are bigger than 2 we obtain a bound for 1/F in 4:

I/F S lD«(rr‘l)zD«(r:<|> - IDU(M.

This completes the proof of part one. For part two we first note that the inequality
F_ (X +d) <F_(X)+dY_(¢F_/éx,)(X) is valid in the non-negative orthant. This fol-
lows from Taylor’s multivariate theorem taking into account that F_ has only positive
coefficients. As a consequence, the semialgebraic region G defined in Lemma 2.1 is
contained in

G = {X:F(X)—dzif—x‘(X)go, Xzo}.

Notice that F(X)—d> (0F_/ox, )X ) < 0 if and only if 3 X <d(}_X )3 (¢F_/éx,)
(X))/F(X). The right-hand side of the last inequality is a quotient of two homogeneous
polynomials of the same degree and we can bound it by the quotient of the maximum
of (3 X )WS (0F_/0x,)( X)) and the minimum of F(X} in the simplex. The minimum
of F(X) equals 4 and the maximum of the numerator can be seen to be bounded by
Ind*, because of the following chain of inequalities:

d(ZX)(Z%i—'(X)> < d*nF_(X) < d*nl.

We have used that "X = 1 because we are in the unit simplex and (¢F_/dx, )(X) <
dF_(X) because F_ has only positive coefficients. Thus Y X is bounded by (Ind?/4)
in G’ as desired. This completes the proof. [J

Lemma 2.1 provides us with an algorithm to find a reasonably good bound for the
Pélya exponent which is a priori smaller than those given in Theorem 1.2. We need
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to find the maximum for the linear functional ) X in the region G which was defined
using F.(X) = F(X) — F_(X + d). The maximum will be attained at a boundary
point Q = (qi,....q») such that F,(Q) = 0 and the partial derivatives of F. with
respect to non-zero entries are all equal. This allows us to use symbolic methods (such
as Grobner bases). Nevertheless, since we are only interested in an upper bound for
the Pélya exponent, it is enough for our purposes to apply numerical optimization
techniques (such as numerical Lagrange multipliers). In the following table we show
the value of the maximum ) _X in G for several polynomials and compare it with the
Polya exponent. The values in the last column have been found by means of Grobner
bases and real root isolation.

Polya exponent  [maxyeg(d X)]

1000x? ~ 1999xy + 1000? 3997 15994
50x7 — 99xy + 5037? 197 794
(50x% — 99xy + 50¥? }x? + y?) 193 3180
(50x% — 99xy + 502 )(x* 4+ x232 + y*) 187 7158
(x — ¥ (x +6¥)* + »* 197 1948
5xY 4 (x — ¥)2(x + 6P +y* 44 367
10x* + (x — y)(x + 6¥) + »* 30 228
x—2P+( -2 +x+y) 3 19
(412x* — 183y +556x2y? +40x)3 + 5334~ 2 30

24x — 344x%y + 184xy* — 200 ¥ + 540x° +
134xy 4+ 678 v* — 182x — 92 y + 444)

The last example in the table is a sum of the squares of 50 randomly generated
quadratic forms, and will be used in Section 3 as an example of the process described
in Theorem 3.2. The coefficients of the quadratic forms were generated using MAPLE's
random numbers subroutine with [—5,...,5] as the range of variation. Our computa-
tional experience indicates that such “random” polynomials tend to have a low Pdlya
exponent.

Let us analyze in detail an example that contains as particular cases the first two
polynomials in the table. Consider F(X) =x]+---+xI —(rn—¢&)x; - -x, for a positive
and small ¢ and large n. As pointed out in [5] its Polya exponent is approximately
(n*(n — 1)/2¢). The maximum of > X in G is attained at a point with xo = --- = x,
and it is approximately (n%/e). So, the bound given by Lemma 2.1 equals the Pélya
exponent asymptotically up to a factor of 2.

We can deduce some important consequences of this example: Polya’s theorem is
not true if F is only non-negative [5] or if it is strictly positive only in the open
orthant (e.g. F(x,v.z) = (x — y)* + z%). The theorem is again not true over non-
Archimedean fields (taking & to be an infinitesimal). Finally, the Pdlya exponent p
cannot be bounded only by the degree d and the number of variables » of F (for
these last two comments see [9]). Any bound will necessarily include the size / of its
coefficients.
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3. Decomposition of strictly positive polynomials

In this section we will connect Polya’s theorem to Hilbert’s 17th problem. This
problem asked whether every non-negative real polynomial can be expressed as a
quotient of sums of squares of real polynomials. It was non-constructively solved by
Artin in 1928 and other solutions have been proposed later, which are constructive or
give conditions and bounds on the output polynomials. We recommend [1] and [2] for
a brief history of the problem ([2] puts special emphasis on constructive aspects of the
solution).

Polya’s theorem was used by Habicht [4] to give explicit solutions to Hilbert’s 17th
problem in the case of positive definite homogeneous polynomials. Here, we present a
different way to do this. If we have a positive definite homogeneous polynomial F in n
variables, Polya’s theorem can be applied to F(e1x1,e2x2,...,¢nX,), Where ¢ € {+,—}.
In this way we have 2" Podlya-like-expressions, each of them certifving the positive-
ness of F inside a different orthant. We proceed to glue these local certificates with
techniques similar to those in [6]. The decomposition of F obtained in this way is a
quotient of two sums of even powers of monomials in the “variables” x|, xa,...,x,. F.
Let us remark that Reznick [8] has also given, using less elementary techniques, con-
crete decompositions for the same family of polynomials. His decomposition has a
sum of even powers of linear forms in the numerator and a power of > x? in the
denominator,

For convenience we will state all results in this section for an inhomogeneous poly-
nomial F. This is possible provided that its homogenization is positive definite or,
equivalently, if F' is strictly positive and its largest degree part is positive definite.
Reciprocally any positive definite homogeneous polynomial can be dehomogenized
yielding an inhomogeneous polynomial with the above conditions. Hence Theorem
3.2 applies to homogeneous polynomials as well. In the following discussion K will
denote any ordered field and K, denotes the set of strictly positive elements in K.
Only in the last part of Theorem 3.2 we neced K to be the rationals in order to apply
the bound in part one of Theorem 1.2.

Lemma 3.1. Let F € K[x,.....x,]. Suppose that for a given x, we have two identities
F-A, = By and F-A> = B, where A\, B are polynomials in K. [x,, T,F?] and A.B; are
polynomials in K, [—x,,T,F*], for some arbitrary set of indeterminates T. Assume
that both B, and B, have a non-zero constant term. Then we can find an expression
of the form F -R = S where R and S are polynomials in K,[x?,T,F*] and S has a
non-zero constant term. Moreover deg(S) < deg(B)) + deg(B:).

Proof. We can decompose Ay = 4, +x,412. B =By +xB12, A2 = Ay —x42,
and B, = By, — x,B2> with A1,412,B1.1,B12,421,422.B21 and By, € K. [x}. T.F?].
Separate the two identities in the form

FA\1 —Biy = —x,FA1 2 +xBy 2 FAyy — By = x,FA> > — x,B;.5.
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Multiplying side by side the above equations and grouping together terms with 7,
we obtain

F (A1) By + BiiAs) +x2412B2 2 + x2B12422)

By hypothesis both By; and B, have a non-zero constant term and thus BB, has
a non-zero constant term. The constant term of F 2A1.1A3,1 is either zero or positive,
and thus the constant term of the right-hand side of the equation above is positive.
From the above expression it is clear that deg(S) < deg(B)) + deg(B;). [

As an immediate application of the above lemma and as a preparation for the mul-
tivariate case we present a method to decompose a real univariate strictly positive
polynomial F as a quotient of two sums of squares. We remark that in the univari-
ate case, the additional condition of F having a positive definite largest-degree part is
redundant. Applying Theorem 1.2 to the homogenization of F we have the following
expression where B;(x) has only positive coefficients

Fx)x + 1)7 = Bi(x).
With the same process applied to the polynomial F(—x) we obtain
F(x)(1 —x) = By(—x).

Taking 4; = (x+1)?, A, =(1—x)? and T = () we are in the situation of Lemma
3.1. This will give an expression F - R = § with R,§ polynomials in R [x?, F-] and
thus sums of squares.

Theorem 3.2. Let F(x,xa,....,x,) be a real strictly positive polynomial of degree d,
whose homogenization is positive definite. For each ¢ = (e1....,&,) in E" = {+,-}",
let p, be the Polya exponent of the homogenization of F in the orthani where the
sign of the ith coordinate equals ¢. Let P =% _p.p, and D be the maximum of
d+ 1 and n+ 1. Then we can write

F-R=15

where R,S € Ry [x3,x3,...,x2,F?] and deg(S) < P +2"d (where S is considered as u
polynomial in the original variables xy.xa. ..., x, to compute deg(S)).

If F € Z[x),x2,....x,], then we can find R and S in Z,[x},x3,...,x2, F*]. We can
also choose R and S with I°™"" monomials, where [ is an upper bound for the absolute

values of the coefficients of F.

Proof. Let E” = {+.—}". For each ¢ = (¢)....,¢,) € E" we have a Polya expression
in the corresponding orthant
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where 4,.B, € R [e1x1,...,&x,]. Moreover, 4, = {1 + &1x; + - - - + £,x, )% and thus B,
has degree p;+d and a non-zero constant term. Our goal is to glue the 2" expressions in
pairs using Lemma 3.1. More explicitly, for each ¢ € E"~! consider the two expressions
FA, = B, and FA, = B,y where ¢ = (6,+) and &' = (5, ).

We can apply Lemma 3.1 with 7 = {61x1,02x2,...,6,_1x,_; }. This will give 20"~
expressions (one for each ¢ = (01,...,0,—1) in E""!) where the variable x, always
appears squared. Inductively, for each t € E"2, we take the two expressions FA, =
B; and FAy; = By with ¢ = (1,4) and ¢’ = (1,—) and apply Lemma 3.1 with
T = {tyx1,T2%2, ..., Ta—2X%n—2,x2 }. This process can be continued until all the variables
appear squared.

For the degrees we note that in each gluing the degrees of the expressions glued
are added. The degree of the final expression will be the sum of the degrees of the 2"
equations derived from Theorem 1.2. This gives the bound P +d2". O

We want to illustrate our method with a simple example. Consider the last polyno-
mial given as an example in Section 2: F := 134xy — 92 y — 182x —24x> +412x* +
540 x> +678 ¥2 +533 y* —200 1% — 18 x>y + 556 x2 3> — 344 x% y +40 x> + 184 x v2 + 444,

We will apply the process described in the proof of Theorem 3.2. Pélya’s theorem
applied to F in each one of the four orthants gives the following four identities (we
show the intermediate distributions of the terms with respect to parity of the powers
of y):

M FA+x+ 3P =FO+2x+x2 + 2+ 9(2+2x)) = 1722x%37 + 1442 x32 + 874 %% + 904 x* + 706 x +
620x2 4938 32 +811 y* +-444+548x3 2 4932 x* 17 4930 y*x 41169 1%x2 +800 x5 +412 x6+533 10+ (474 x+
460 x> + 548 x% + 1498 x3? + 796 + 1064 32 + 396 x* + 806 x> + 1106 v*x + 1016x2 32 + 1134 x% 2 + 866 1*)

(1) Fll+x — ¥ = FO +2x +x2 + 3% — 32+ 2x)) = 2562x% 32 4 1274x)" + 874x> + 904x* +
706 x +620x2 4 1306 32 + 1611 y* + 444 + 1996 x3 17 + 1004 x* y2 + 1570 y*x + 1009 y4x% + 800 x> +412x0 +
533 3% — y(574x 4+ 1604 x> + 884 x> + 1950 x3? + 980 + 1648 p2 + 1156 x* + 842x% + 1026 y4x + 1944 x232 +
1090 %% 32 + 1266 3%).

(i) F(l = x4 3P = F(1 —2x+x2 + ¥ + p(2 — 2x)) = 450x2y? — 902 x3? — 1286x% + 1000 x* —
1070 x + 1348 x> + 938 32 + 811 y* + 444 — 300 x3 32 + 1004 x* 32 — 402 34x + 1009 y*x? — 848 x5 +412x° +
533 36 4 p(—934x — 324x% + 740 x> — 414 x1? + 796 + 1064 32 + 564 x* — 842 x° + 866 3* — 1026 y*x +
120x2y% — 10903 32),

(v) F(1 —x — y) = 716?32 — 628 xy? — 564 x> + 436 x% — 626x + 722x2 + 770 32 4 733 v* + 444 —
538x3 92 —573 3 x—~412x5 — (—408 x—350 x> + 1018 x2 — 56 x3° + 5364878 y2+394 x* +533 194596 x% 32 ).

Applying Lemma 3.1, with y as the distinguished variable to the pairs (i)—(ii) and
(i1i)—(iv), and grouping terms as in Lemma 3.1 we get (notice the expressions are

presented now arranged by parity of powers of the variable x):

(1)=(ii): F(7508 x2 y + 18160 x2 32 + 6544 x* + 4952 x? 4 6684 32 + 10090 y* +20348 x* 2 + 26700 1*x? +
5832x64+7752 ¥0 48562 x* 1* +6056 x0 12 +824x% 41066 y® +888+x(14264 y2+5640 x> +3188+22568 x2 12 +
22380 3* + 6964 x* + 14416 x* 7 + 19768 3*x? + 13160 »° + 3248x%))

= 20679124 x2 36 + 6723652 x2 ¥ 42421240 x* + 1048996 x% + 1776416 12 + 4654924 y* +12531112x% v2 +
16893804 v*x? +3380292 x6 +6653476 y6+24185356x* 34 + 12976984 x6 2 13666432 x® 3* 45547524 x6 6 4
1476284 x10y2 + 4580433 x*y® + 2295630 y'0x% + 169744 x'2 + 284089 y'2 + 6 F2x2y2 + F? + 6 F?x? +
6F2y + F2x* 4+ F234 417274928 x5 34 + 20296116 x% 3© + 7688272x3 32 + 13108438 x% % + 2726496 x% +
5276765 y® + 1384896 x'0 + 2387282 y10 4+ 197136 +x(3711592 y° + 1651552 x% + 626928 + 10260368 x% 1% +
10310324 y* + 3070608 x* + 14459768 x4 32 + 22021832 y*x? + 14337360 30 + 3621212 !0+ 9347744 x634 4
12882352 x% 1% + 3862096 x8 v2 4+ 9701716 x2 38 + 659200x!0 + 12 F2y2 4 2166576x3 + 4 F2 + 4 F2x? +
22429140 x% y* + 22897032 %7 ¥ + 10878896 x° 2 + 10718648 & + 3153936x°).
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(11)—(iv): F(8408x212 + 4572x* + 4836x2 + 4020 32 + 5134 y* + 5584 x*12 + 5430 3*x% + 2520x° +
3198 v0 + 888 — x(7456 17 + 5268x% + 3028 + 6972x%17 + 6162 y* + 3696 x* + 3584 x*17 + 4402 y¥x? +
3198 y® + 824 x° )

=5298888 x? 1® + 5057552 x2 32 4 3019356 x* + 1588900 x2 + 1185008 1 + 2676988 3* + 6822948 x* 1’ +
6963772 v4x2+3189648 x +3371312 0 4+6633028 x4 1445042212 x5 \'2+F2+3 F2x*+3 F2)24-3085788x%
3212416x*1° + 1829476 x% 32 + 19891231218 + 1741568x% + 2332333 »® + 529008x10 + 852267}“’
197136 — x(2915800 v2 + 2437788 x> + 753024 + 6141928 x? y2 + 4529144 * + 3340724 x* + 6443844 x% 17 +
7068028 3%x% 4+ 4175308 10 + 852267 y'0 4+ 2123228 x5 1% 4 2840400 x* © 4 967052 x8 32 + 2057377 x2 1% +
169744 x1043 F2 12 11014096 x8 +3 F2 + F2x2 45639176 x* y* 44866908 x% 10 + 3468572 x0 12 12264079 1* +
2550240 x°).

Finally, applying again Lemma 3.1 with x as the distinguished variable, we get
the following expression from which F is decomposed as a quotient of two sums of

squares:

F(716381628672x2 35 4 80945077792 x2 v + 1309788013600 x'91440286070144 x* + 8570997312 x2 +
4739888256 12 4+ 24573722112 3% + 318423130400 x* 3% + 317633301040 v*x? + 99294039872 x° +
68743283680 v° + 1060688074256 x*y* + 672316077216x ¥ 4 143469890432 x'43? +
1982702974736 x% 3 + 2814822717360 x°° + 768832371904 x'0 32 + 2303389497104 x* 18 +
990053073384 v10x% + 125406307008 x'* ¥ 116435744860 112 + 1863486418736x" ¥+

1983138377456 x* 10 + 886558335136 x5 32 + 1032502294416 x2 3% + 505612381472 x'234 +

157752051648 x8 + 122024198048 1® + 169540742272 x'0 4 144755788904 y10 + 40199723460x3_\»‘6 +
2507919676288 x ¥ + 1687333237608 x* y10 4 2293828274592 x8 30 4 621063650084 x2 y'2 +
1282298534376 x5 19 4 1423499576064 x®® + 379456896112 x® v1° +292967217500x012 +
338955778976 x'0 8 + 145245087972x* y14 + 1051819997200x'V v® + 235854251632 v"‘
208393538448 x'2 16 + 60652193280 x"* + 735231433668 x% »12 + 1817033244 '® + 2051220115202 +
60546876076 v!* + 17483777024 x'° + 18186081524 »1® + 1958166784 x'8 + 350113536 + (39456 x% +
109168 x* + 60284 v* + 128196 x% 3% 4 89728 %% 12 + 76044 y© + 227652 x% y6 + 395200 x2 15 + 48644 1% +
11536 x10 4+ 6396 110 4- 208940 x6 v* + 551252 x% v* + 342344 x%32 4 451140 x> + 430776 x* 12 +
2384563212 + 1776 + 72800 x® + 18696 1% + 1226405 )F? 1 85194907968 x4 1* + 430307879168 x12y2
=(153448078017504 x% 1® + 11011029982720 x2 +% + 851952864568912 x10 4 1 5511262925968 x* +
992116096128 x2 + 583803281664 12 + 3550450975360 y* + 53477285280880 x* 12 + 53285071815840 14x? +
16742340875856 x + 12247813101568 3% + 228076657290496 x* 3* + 144275999563072 x6 1* +
177419113096224 x'* 2 + 818449513424880 x8 v* + 1160297022426176 x81° + 316404880090816 x!0y2 -
943080312658456 x* 8 + 400790099977488 v'0x? + 51946321935360x'2 + 51812546094456 y'2 +
537983815619840x%3* + 571695232269920 x* 36 + 255064333134736 x8 3% + 295172928849576 x2 1
613138233076304 x'21* + 33884952842288 x® + 27834477697840 1® + 48891319043696x'? +
44539310679888 119 + 132667868133349 x? 16 + 1609709073374408 x® 18 + 1074117047816472 x* !0 +
1484929624125296 x® y® + 391920773628424 x° v'° + 1494743643985512x0 10 + 1679981404535176 x% 18 +
1210562461740080 x* "7 +-922584991406952 x6y'2 4+ 1101811041447776 x'0 & 4 463071536349080 x* 314 +
1257591653271 1041'0 © 1 274626206521816 x2 14 + 697775379415696 x'2 ,° + 40598074878080 x4 +
854507981216656 x* »'2 + 11022901919929 V18 + 76241258273152 %1012 + 44002353922224 v 4
22913533222784 x' + 26786486470753 v'® + 8809248338688 x'® 4+ 296435588380336x143* +
40113876079218 3'8x2 + 5607817144761 120x2 + 25101305044221 x* 318 + 20172563339904 x5, +
2384556922240 x°0 1% + 63315154652095 x5 316 1 128071716208936 x' 312 4 11885395021040 x'#14 +
106193345637816 x5 114 + 75244284164400x'4 18 + 113979811644760 x'2 w10 + 36042080253584 x!616 4
156928941649179 y1%x* + 87953191492976 x'¢ ) + 351913378400864 x° v'* + 234657785839200x'% 16 +
525673478728032 x% 12 + 427778646436656 x” B 1 557728278696952 x10 10 1 38862602496 +
081083319515732)(‘“ 1242697191817931 120 1242119679763 122£2064497141504 x204201691178752 r“‘+
(30 +45x% 17 4191 +21x% + 932 + 14+ 90x%y% + 57 y4x? +35x* + 7x0)F* + (1011238152 x2 10
214583120x2 32 + 213172104 x'0 34 + 104354136 x* + 27650008 x> + 14240800 v + 60356936 v+ +
628009464 x% 12 1633987416 v*x? + 191801384 x0 + 125837552 v 4 1474515760 x* y* + 929987432 x012 +
932892160 x%1* + 1345813968 x 3 + 355155544 x1%32 + 1110516186 x* ¥ + 486373732 3192 +
54326496_r12 + 45155610 y” + 1635596488 x5 p* + 1755400200x*y8 + 771165424 x% 12 + 932373358 x2 18 +
214189576 x% + 155761526 »® + 142279872 x'0 4 112787062 »'0 + 436152642 0,8 + 292702206 !0y
386752696 x% v* + 107817366 x° 117 + 7129248 x'* + 5113602 v'* + 1182816 + 65068392 x12 12 )F2)
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